
www.elsevier.com/locate/ijhmt

International Journal of Heat and Mass Transfer 50 (2007) 4614–4622
The zero-phase Stefan problem

C. Naaktgeboren *

Southern Methodist University, Mechanical Engineering Department, P.O. Box 750337, Dallas TX 75275-0337, USA

Received 22 October 2006; received in revised form 9 March 2007
Available online 17 May 2007
Abstract

The classical one-phase Stefan problem is presented in dimensionless form with a time-varying heat-power flux boundary condition.
The formulating parameters are the Stefan number, Ste, and a generalized form of the Biot number, Bi. The asymptotic solution for
Bi! 0 of the governing equations is of an isothermal phase change material domain, simplifying the model into a moving boundary
zero-phase type problem. Exact solutions to the zero-phase model can be found for finite domains in Cartesian, cylindrical and spherical
coordinates in one dimension with sign-switching boundary conditions in terms of moving boundary location, or, conversely, melting
times. The model can be thought of as an analytical approximation for cases having small but finite Biot numbers. A more general
expression that takes the geometry as a parameter is presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat diffusion with phase change of the diffusing med-
ium appears in a variety of natural phenomena and techno-
logical processes, and are frequently coupled with other
transport phenomena. Such problems involving the solid
and liquid phases are part of a broader class of moving
boundary problems, or Stefan problems, named in honor
of Jožef Stefan [1]. Though the underlying heat diffusion
process can sometimes be considered linear, Stefan prob-
lems incorporate a non-linearity of geometrical type [2],
because the moving boundary location is unknown.

Phase change materials (PCMs) are commonly used for
energy storage and retrieval in thermal energy systems and
electronics cooling, the thermal design of such systems
involves the solution of a coupled problem. Approximate
analytical models for the phase change phenomenon are
useful tools in the early design stages of such systems; how-
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ever, the simplest of such tools—the quasistationary
approximation due to Le�ıbenzon [3]—fails to accommo-
date initial conditions when the direction of heat transfer
switches in the fixed boundary.

The solution of higher order analytical approximations,
such as perturbation methods [4], quickly becomes complex
and unattractive, if compared to the generality and simplic-
ity of numerical methods [5,6]. On the other hand, analyt-
ical approximations yield, contrary to numerical methods,
parametric solutions that are far more desirable in the
design process of a system.

This limitation compels one to seek even simpler analyt-
ical models. Frequently, one might be interested in finding
solutions for asymptotic values of the parameters [7–9].
Such approach is seemingly common in contemporary
research on Stefan problems [10–12].

The present work introduces an isothermal moving
boundary approach to model phase change processes.
The model is formally derived from the classical one-phase
Stefan problem whose boundary condition (BC) is made to
depend on a generalized form of the Biot number, Bi, and
corresponds to its asymptotic solution taking Bi ? 0.
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Nomenclature

Bi Biot number, Eq. (7)
c incompressible substance specific heat, Eq. (3)
f any function, Eq. (15)
G geometrical coefficient, Section 5
h convective heat transfer coefficient, Eq. (5)
J number of phase change interfaces in domain,

Section 4.2
k PCM thermal conductivity, Eq. (2)
L PCM latent heat of fusion, Eq. (4)
‘ dimensionless domain extent, Eq. (30)
Q heat-power flux ratio, Eq. (24)
q00 heat-power flux, Eq. (2)
R radial phase change interface location, Eq. (34)
r radial coordinate, Eq. (34)
s integrand dimensionless time, Eq. (20)
Ste Stefan number, Eq. (7)
T temperature, Eq. (1)
t time, Eq. (2)
X phase change interface location, Eq. (3)
x Cartesian coordinate, Eq. (1)
Z dimensionless radial phase change interface

location, Eq. (34)

Greek symbols

a thermal diffusivity, Section 3.3
b radiation heat transfer factor, Eq. (5)
f dimensionless radial coordinate, Eq. (34)
H dimensionless radiative heat-power flux, Eq.

(14)
h dimensionless temperature, Eq. (6)
j dimensionless thermal conductivity, Eq. (8)

k freezing constant, Eq. (23)
m temperature ratio, Section 2.1
N dimensionless interface location, Eq. (6)
n dimensionless Cartesian coordinate, Eq. (6)
q PCM’s density, Eq. (3)
R dimensionless phase extent, Eq. (30)
s dimensionless time, Eq. (6)
w00 dimensionless heat-power flux, Eq. (6)

Subscripts
0 initial
f far
i; j; k indices
L that of liquid phase
‘ left
m melting
n near
p prescribed
r right
S that of solid phase
w that of the wall
1 evaluated at infinity

Superscripts

qs quasistationary
zp zero-phase
0 translated
� near side of
+ far side of
w scale of
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Owing to its simplicity, solutions to problems involving
multiple interfaces in finite geometries in Cartesian, cylin-
drical, and spherical coordinates with time-varying, sign-
switching heat-power fluxes as BCs can be easily found
for the zero-phase formulation.

The isothermal or zero-phase approach for modeling
phase change processes has the advantage of uncoupling
otherwise coupled problems, since the PCM domain can
be replaced by a fixed temperature boundary condition at
the PCM’s melting temperature for the rest of the system,
as long as the PCM is changing phase.

The solution given by the proposed zero-phase model is
exact when Bi! 0 and is applicable only when the PCM is
undergoing phase change. A study on lumped closed sys-
tems with heat generation that exchanges heat with a peri-
odic temperature environment and internal PCM-filled
heat sinks [13], verified that replacing the PCM domain
by an isothermal BC yields results within 2% of the value
obtained numerically for the Biot number equal to unity.
The discrepancy between theoretical and numerical results
grows rapidly, however, as the Biot number increases.
Hence, the zero-phase model can be applied as an ana-
lytical approximation for cases having small but finite Biot
numbers, such as phase change in micro-channels, phase
change of micro or nano-encapsulated PCMs, and some
situations involving highly conductive PCMs.

As will be shown later, the present model can also be
applied to problems in which heat interactions are applied
directly to the phase change interface, such as melting of
icebergs or non-encapsulated PCMs, radiative melting of
a PCM constituted of an opaque solid and a transparent
liquid, or direct contact melting.
2. The one-phase Stefan problem with time-varying heat-

power flux boundary condition

Consider the classical one-phase Stefan problem, in
which a semi-infinite, initially solid slab having uniform
temperature distribution

T ðx; 0Þ ¼ T m; x P 0; ð1Þ
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where Tm is the PCM melting temperature and x the Carte-
sian coordinate that bounds the domain at its origin, is
melted by an imposed time-varying heat-power flux,
q00wðtÞP 0; 8t P 0, at the boundary x = 0:

q00wðtÞ ¼ �kL

oT
ox

����
x¼0

; ð2Þ

where kL is the thermal conductivity of the liquid PCM.
The unsteady temperature distribution of the liquid

phase, T ðx; tÞ, is governed by the heat diffusion equation
on the (variable) liquid domain in the absence of advection:

qcL

oT
ot
¼ o

ox
kL

oT
ox

� �
; 0 6 x < X ðtÞ; ð3Þ

where q is the PCM’s density (same for the solid and liquid
phases), cL is the incompressible liquid phase specific heat,
which might be different from that of the solid phase, and
X ðtÞ is the location of the sharp, planar liquid–solid inter-
face, which moves according to the Stefan condition

qL
dX
dt
¼ �kL

oT
ox

����
X�
; ð4Þ

where L is the PCM latent heat of fusion. The temperature at
the phase change interface is the melting temperature:
T
�
X ðtÞ; t

�
¼ T m. The initial condition for Eq. (4) is X ð0Þ ¼ 0.

The time-varying heat-power flux q00wðtÞ that causes the
phase change,

q00wðtÞ ¼
q00pðtÞ; ðaÞ
h½T1ðtÞ � T wðtÞ�; ðbÞ
b½T 4

1ðtÞ � T 4
wðtÞ�; ðcÞ

8><
>: ð5Þ

models not only a prescribed amount of heat flux imposed
on the boundary (a), but also a convective (b) or radiative
(c) heat flux between the boundary and its surroundings.

In Eq. (5), T1ðtÞ takes on the usual meaning for Newto-
nian and radiative heat exchanges, T wðtÞ is the absolute
wall temperature of the phase change domain:
T wðtÞ � T ð0; tÞ, h is the convective heat transfer coefficient
and b is the radiation heat transfer factor. The solidifica-
tion problem is obtained by replacing kL, cL, and L by
kS, cS, and �L, respectively [2].

2.1. Non-dimensionalization of the problem

Let Tw be L=cL, or a scale of jT1ðtÞ � T wðtÞj, or
jðT H

1Þ
4 � ðT H

wÞ
4j1=4, when option (a), (b), or (c) of Eq. (5),

respectively, is prescribed, where T H

1 and T H

w are scales of
T1ðtÞ and T wðtÞ, respectively. Let further qw be a scale of
jq00pðtÞj, or hT H, or bðT HÞ4; tw a temporal scale of either
function q00pðtÞ or T1ðtÞ; and xw a length scale such that
xH ¼ ðtHqHÞ=ðqLÞ, so the following dimensionless variables

h ¼ T � T m

T H
; w ¼ q

qH
; s ¼ t

tH
; and

ðn;NÞ ¼ ðx;X Þ
xH

; ð6Þ
and the parameters

Ste ¼ cLT H

L
; and Bi ¼ qHxH

kLT H
; ð7Þ

can be defined. With Eqs. (6) and (7), Eqs. (2)–(4) become

w00wðsÞ ¼
�j
Bi

oh
on

����
n¼0

; ð8Þ

Ste
oh
os
¼ o

on
j
Bi

oh
on

� �
; 0 6 n < NðsÞ; ð9Þ

� dN
ds
¼ �j

Bi
oh
on

����
N�
; ð10Þ

where j is +1 for the melting problem or kS=kL for the
solidification problem. On Eq. (10), the plus sign on the
LHS refers to the melting problem, whilst the minus sign
refers to the solidification problem. The interface and ini-
tial conditions are

hðNðsÞ; sÞ ¼ 0; ð11Þ
hðn; 0Þ ¼ 0; n P 0; ð12Þ
Nð0Þ ¼ 0: ð13Þ
The dimensionless boundary heat-power flux becomes

w00wðsÞ ¼
w00pðsÞ; ðaÞ
h1ðsÞ � hwðsÞ; ðbÞ
H1ðsÞ �HwðsÞ; ðcÞ

8<
: ð14Þ

where H ¼ h4 þ 4h3mm þ 6h2m2
m þ 4hm3

m, and mm ¼ T m=T H.
Stefan problems with imposed heat-power flux admit

exact, explicit solutions in Cartesian coordinates only when
the heat-power flux imposed at the boundary varies as
/ t�1=2 [14], which was shown by Tarzia [15] to be equiva-
lent to an imposed temperature boundary condition; hence,
to the classical one-phase Stefan problem. If the latent heat
L is made a linear function of the distance x, there is an
exact solution due to Voller et al. [16] for a constant
heat-power flux imposed at the boundary. Voller et al.’s
model is representative to the movement of the shoreline
in a sedimentary basin.

A large Stefan number approximate analytical solution
due to Gammon and Howarth [17] for freezing of liquid
spheres was obtained for constant temperature and heat-
power fluxes using a perturbation method and slight axi-
symmetric perturbations of the boundary conditions.

An asymptotic analysis of the problem with convective
boundary condition for t!1 was made by Tarzia and
Turner [7]. Howarth [8] presented a perturbation solution
for large Ste and t! 0;1. The existence, uniqueness, sta-
bility, monotone dependence, and asymptotic behaviour
for t!1 of the problem with prescribed heat-power flux
was studied by Cannon and Primicerio [18].

3. Asymptotic solution for Bi ! 0

In the limit of Bi! 0 the governing equation (9) reduces
to

o
2h

on2
¼ 0; 0 6 n < NðsÞ; + oh

on
¼ f ðsÞ: ð15Þ
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Further, the boundary condition, Eq. (8), yields

oh
on

����
0

¼ oh
on
¼ 0 + hðn; sÞ : hðsÞ; ð16Þ

from Eq. (11), one has

hðn; sÞ ¼ 0; ð17Þ

leading to an isothermal domain n P 0 at the phase change
temperature during the whole duration of the problem,
yielding hw ¼ Hw ¼ 0, in Eq. (14).

The indetermination on the Stefan condition can be
resolved by rewriting it in terms of the boundary condition,
Eq. (8), using the solution to the governing equation (15):

�j
Bi

oh
on

����
N�
¼ �j

Bi
oh
on

����
0

; + � dN
ds
¼ w00wðsÞ: ð18Þ

Melting problems have w00wðsÞP 0, whilst solidification
ones have w00wðsÞ 6 0, thus

dN
ds
¼ jw00wðsÞj: ð19Þ

The solution to Eq. (19) subjected to the initial condition
(13) is easily obtained:

NðsÞ ¼
Z s

0

jw00wðsÞjds: ð20Þ
3.1. Interpretation

The limit Bi! 0 of the one-phase Stefan problem can be
regarded as the ‘‘zero-phase Stefan problem”, since the
heat diffusion equation does not need to be solved for
any of the two phases present in the domain. The Stefan
condition is reduced to a statement of conservation of
energy, Eq. (19). A trivial solution is obtained for the heat
diffusion equation on both phases; nonetheless, the Stefan
condition admits a non-trivial solution, imparting theoret-
ical and practical significance to the limiting case, in terms
of interface location and melting/solidification times [19].

The limit of Bi! 0 corresponds to the phase change
equivalent of the lumped capacitance model for problems
not involving change of phase.

An interesting outcome is the linearity and simplicity of
Eq. (19), by which the dimensionless phase change inter-
face speed equals the absolute dimensionless heat-power
flux at the boundary at all times, regardless of the domain
thickness NðsÞ. Moreover, Eq. (19) shows that phase
change interfaces only move away from the fixed
boundary.

Eqs. (17) and (20) are the exact solutions to the problem
in the limit of Bi! 0 and to problems where the heat-
power flux is at all times applied directly at the phase
change interface, since for the zero-phase model, the
heat-power flux is uniform in the domain 0 6 n < NðsÞ,
Eq. (15).

The zero-phase model can also be regarded as an analyt-
ical approximation for real phase change processes with
small but finite Bi. As for any other analytical approxima-
tion of a phase change problem, there is no available way
of estimating the error introduced by the simplifications [2].

If the Biot number, Eq. (7), approaches zero due to a very
large kL while keeping all other scales finite, an isothermal
condition will appear for the solidification problem only if
j ¼ kS=kL remains finite, i.e., only if kS is very large as well.

3.2. Comparison with Leı�benzon’s approximation

The simplification introduced by the zero-phase model is
even greater than the one proposed in 1931 by Le�ıbenzon
[3], which is better known as the ‘‘quasistationary approx-
imation”, for which a steady heat diffusion equation has to
be solved for one of the phases.

Le�ıbenzon’s widely employed model corresponds to the
limit of Ste! 0 by making cL;S ! 0 and keeping the tem-
perature or heat-power flux scale at the boundary finite.
Approximate solutions of phase change problems under
Le�ıbenzon’s assumption are known for unsteady imposed
temperature, convective, and prescribed heat-power flux
boundary conditions in Cartesian, cylindrical and spherical
coordinates. In the case of steady convective boundary
condition, Le�ıbenzon’s method yields NðsÞ growing as the
square-root of time for Bi!1, and as a linear function
of time as Bi decreases towards zero [2]:

NqsðsÞ ¼ 1

Bi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Bi2

Z s

0

h1ðsÞds

s
� 1

( )
; therefore;

ð21Þ

lim
Bi!0

NqsðsÞ ¼ Bi
Z s

0

h1ðsÞds: ð22Þ

Although NqsðsÞ clearly vanishes in Eq. (22), since both
parameters of the problem tend to zero, it behaves linearly
in time for small values of Bi and constant h1ðsÞ.

3.3. Comparison with Neumann’s solution to the classical

one-phase problem

The constant temperature boundary condition imposed
at x = 0 for the classical one-phase Stefan problem was
shown by Tarzia [15] to be equivalent to an imposed
heat-power flux varying as q00p / t�1=2, allowing the compar-
ison of freezing constants

k ¼ X ðtÞ
2
ffiffiffiffiffiffiffiffiffi
aL;St
p ; aL;S ¼

kL;S

qcL;S
; ð23Þ

given by the Neumann’s exact solution to the one-phase
problem, and the one given by the present zero-phase mod-
el, kzp.

Let Q be the ratio of heat-power fluxes at the fixed and
moving boundaries, according to the Neumann’s solution,
one has,

Q ¼ q00ð0; tÞ
q00ðX ; tÞ ¼ ek2

; ) Q P 1: ð24Þ



Fig. 1. Domain initially with multiple interfaces. (a) Solid as first phase
with J = 5. (b) Liquid as first phase with J = 4.

4618 C. Naaktgeboren / International Journal of Heat and Mass Transfer 50 (2007) 4614–4622
Since Eq. (15) results in an uniform heat-power flux
throughout the domain 0 6 n 6 NðsÞ for the zero-phase
model, one has Qzp ¼ 1; therefore, the model predicts a
phase change interface that goes Q times faster than the va-
lue given by Neumann’s solution by virtue of the Stefan
condition, Eq. (10), yielding

kzp ¼ Qk ¼ kek2 ¼ Steffiffiffi
p
p

erfk
; ) kzp P k: ð25Þ

Hence, the zero-phase model overestimates the phase
change interface position for Bi > 0. This is also true for
the Le�ıbenzon’s analytical approximation [2].

4. Relaxation of constraints

Knowledge of the zero-phase (isothermal) condition
obtained once the Biot number goes to zero allows the
relaxation of some of the original assumptions, making
the model applicable to more realistic situations.

4.1. Arbitrary interface initial position

The most elementary relaxation to the problem
expressed by Eqs. (8)–(11), (13), and (14) is to change the
initial location of the liquid–solid interface, Eq. (13), to
Nð0Þ ¼ N0; N0 P 0. Evidently, Eq. (12) applies now to
both phases. The zero-phase model solution is simply

NðsÞ ¼ N0 þ
Z s

0

jw00wðsÞjds: ð26Þ

It is worth noting that the initial condition has to be of an
uniform temperature hðx; 0Þ ¼ 0, that will last while phase
change takes place.

4.2. Presence of multiple interfaces on the domain

Now a number J > 1 of interfaces Nj;0 P 0; 0 6 j 6
ðJ � 1Þ, are initially present in the domain. The domain
is therefore comprised initially of planar, parallel regions
occupied by solid and liquid phase change material.
Still assuming no sign switch in the boundary heat-power
flux, the initial location of the first (leftmost) interface for
a melting problem is zero if solid occupies initially the
region adjacent to the boundary, as in Fig. 1(a), or greater
than zero otherwise, as in Fig. 1(b), or the inverse, for a
freezing problem. For s ¼ 0, the position of the jth inter-
face is denoted as Nj;0 and for s P 0, as NjðsÞ, such that
Njð0Þ � Nj;0.

The Stefan condition, Eq. (10), states that all incoming
flux of energy is entirely absorbed or released by the mate-
rial in the form of latent heat at the first interface. There-
fore, the heat-power flux on the back side of the first
interface and locations beyond that is always zero, due to
the absence of temperature gradients and unbounded
domain; hence, the first interface moves forward according
to the solution of Eq. (19), while all other interfaces remain
static.
The first region occupied by solid PCM is N0ðsÞ 6
n 6 N1;0, for a melting problem. When N0ðsÞ reaches N1;0,
the first region occupied by solid, along with the N0 and
N1 interfaces that define it, disappear and the interface
N2, if present, instantly becomes the moving one.

It is worth noting that in the zero-phase model, conser-
vation of energy is satisfied only by phase change, and not
at all by the governing equation, in the form of sensible
heat; therefore, the model will yield physically meaningful
results only if there is at least one phase change interface
in the domain.

Let dimensionless times sH

i , with sH

0 ¼ 0 and sH

i ; i > 0
being the dimensionless times for which N2i�2ðsH

i Þ ¼ N2i�1;0.
Starting with i = 1, the time sH

i is the solution ofZ sH

i

sH

i�1

jw00wðsÞjds ¼ N2i�1;0 � N2i�2;0; ð27Þ

or infinity, if there is no interface N2i�1;0. There will be as
many sH

i ; i P 1, as regions initially solid for a melting
problem.

The position of the moving, leftmost interface
N2iðsÞ; i P 0 is

N2iðsÞ ¼ N2i;0 þ
Z s

sH

i

jw00wðsÞjds; sH

i 6 s < sH

iþ1: ð28Þ

At all times sH

i ; i P 1, the moving interface jumps a
dimensionless length of N2i;0 � N2i�1;0.

4.3. Sign-switching boundary heat-power flux

Though Le�ıbenzon’s quasistationary approximation is
widely used as a tool to provide simple, order of magnitude
estimates of the basic behaviour of real systems, its inability
of matching certain types of initial conditions prevents its
use in cases where the direction of heat transfer changes at
the boundary. This kind of situation, howbeit, seems to rep-
resent the most common application of PCMs undergoing



Fig. 2. Finite domain with multiple interfaces.

Fig. 3. Finite hollow cylinder with multiple interfaces and J = 3.
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cyclic charge and discharge of thermal energy in practice
[20,21].

Solutions for zero-phase problems with sign-switching
heat-power fluxes at the boundary can be found, since
the whole domain remains isothermal at all times, provided
phase change is always taking place.

If an initially solid domain at the melting temperature is
melted under the influence of an initially positive heat-
power flux imposed at its boundary, the melting interface
will depart from the fixed boundary and move away from
it, satisfying the Stefan condition. If the heat-power flux
imposed at the boundary reverses sign, the melting inter-
face cannot move backwards, Eq. (19); instead, for
Bi! 0 a solidifying front instantly appears at the fixed
boundary, where heat is being withdrawn. The solidifying
front will move away from the boundary as well. There-
fore, in zero-phase modeling, interfaces can only move
away from the excitation at a fixed boundary, and a rever-
sal of sign in the boundary thermal excitation always intro-
duces new interfaces.

Let RL
0 and RS

0 be the initial dimensionless extent of
liquid and solid phases, respectively. On Fig. 1(a), for
instance, RL

0 ¼ ðN2;0 � N1;0Þ þ ðN4;0 � N3;0Þ, while RS
0 ¼ 1.

Phase change will always occur if the following condition
holds true:

�RL
0 6

Z s

0

w00wðsÞds 6 RS
0 ; 8s P 0: ð29Þ

Eqs. (27) and (28) are the solutions of the problem until the
heat-power flux imposed at the boundary changes sign.
Whenever w00wðsÞ changes sign, say at dimensionless times
s ¼ sk; k ¼ 1; 2; 3; . . . ; one have to treat the problem as
one of multiple interfaces in terms of a translated dimen-
sionless time variable s0 ¼ s� sk with a new leftmost mov-
ing interface N0;0 set to zero, in accordance to what was
conventioned in Section 4.2. The remaining interfaces have
to be re-indexed to fit in the new sequence.

4.4. Finite domain

This assumption renders the model akin to real applica-
tions, in which multiple interfaces are allowed to coexist
inside the domain of length xH‘. In this configuration,
another boundary condition ought to be specified on the
rightmost end of the domain, n ¼ ‘.

Assuming that a positive heat-power flux is oriented so
to enter the left boundary n = 0, and to leave through the
right boundary, n ¼ ‘. Let w00‘ ðsÞ and w00r ðsÞ be the dimen-
sionless heat-power fluxes in the form of Eq. (14) at the left
and right boundaries, respectively. Fig. 2 illustrates an ini-
tial condition for which both w00‘ and w00r are positive.

Phase changes will always occur if Eq. (30) holds true:

�RL
0 6

Z s

0

½w00‘ ðsÞ � w00r ðsÞ�ds 6 ‘� RL
0 ; 8s P 0: ð30Þ

If two or more phase change interfaces are present in the
domain, there will be no heat interaction between left
and right sides of the domain, and only the left and right-
most interfaces will move in response to the heat exchange
at their respective boundaries. While this condition holds
true, the problem can be separated into two independent
ones, and the solutions can be obtained from the methods
already discussed in Sections 4.1–4.3 with the Stefan condi-
tion for the leftmost and rightmost interfaces being,
respectively,

dN‘

ds
¼ jw00‘ ðsÞj; and

dNr

ds
¼ �jw00r ðsÞj: ð31Þ

If, however, there is only one interface present in the do-
main, then the Stefan condition becomes

dN
ds
¼ jw00‘ ðsÞj � jw

00
r ðsÞj: ð32Þ

It is worth noting that this condition can only be achieved
if w00‘ and w00r have the same sign, for an odd number of
interfaces must be present in the domain if their signs agree
or an even number otherwise. The solution is therefore

NðsÞ ¼ N0 þ
Z s

0

½jw00‘ ðsÞj � jw
00
r ðsÞj�ds ð33Þ

until either w00‘ ðsÞ or w00r ðsÞ or both changes sign.
4.5. Cylindrical coordinates

Let r be the radial cylindrical coordinate and RjðtÞ the
interfaces’ radial locations. Using the scales employed in
the Cartesian coordinates problem with the new dimen-
sionless variables

ðf; ZÞ ¼ ðr;RÞ
xH

; ð34Þ

as shown in Fig. 3, the dimensionless problem in cylindrical
coordinates is [22,23]:
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w00nðsÞ ¼
�jn

Bi
oh
of

����
fn

; ð35Þ

w00f ðsÞ ¼
�jf

Bi
oh
of

����
ff

; ð36Þ

Ste
oh
os
¼ 1

f
o

of
jj

Bi
f
oh
of

� �
; ZjðsÞ < f < Zjþ1ðsÞ; ð37Þ

� dZj

ds
¼ �j

Bi
oh
of

����
Z�j

þ j
Bi

oh
of

����
Zþj

; ð38Þ

h
�
ZjðsÞ; s

�
¼ 0; ð39Þ

hðf; 0Þ ¼ 0; fn 6 f 6 ff ; ð40Þ
Zjð0Þ ¼ Zj;0: ð41Þ

In Eqs. (35)–(41), j is +1 if the corresponding location or
region is occupied by liquid, or kS=kL otherwise. The sub-
scripts n and f refer to the boundaries ‘near’ and ‘far’ from
the center, as indicated in Fig. 3. On the LHS of Eq. (38),
the plus sign applies to interfaces where liquid PCM occu-
pies their Z�j side, while the minus sign applies to the oppo-
site configuration. It is worth noting that j on the first term
of RHS of Eq. (38) will always be different than the one on
the second term, since each side of the interface is occupied
by a different phase.

The asymptotic behaviour for Bi! 0 yields, for Eq. (37)

f
oh
of

� �
¼ f ðsÞ: ð42Þ

It is worth comparing the influence of geometry on Eqs.
(42) and (15). The indetermination on the Stefan condition
is dealt with in a similar manner as done in the Cartesian
coordinates case. Three situations arise in the solution of
the Stefan condition: (i) zero heat-power flux on the far
side of the interface, (ii) zero flux on the near size of the
interface, and (iii) non-zero fluxes on both sides of an
interface.

Situation (i) arises in cases of outward phase change,
where either the cylinder is radially unbounded from the
outside (infinite cylinder), or when there are other inter-
faces between the innermost one and the outer boundary,
as is the case of interface Z0 in Fig. 3. The Stefan condition
for the innermost interface becomes, after eliminating the
indetermination, ZdZ=ds ¼ fnjw00nðsÞj. The solution is

Z0ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

0;0 þ 2

Z s

0

fnjw00nðsÞjds

s
: ð43Þ

Situation (ii) arises in cases of inward phase change, where
either the cylinder is unbounded from the inside (filled cyl-
inder), or when there are other interfaces between the out-
ermost one and the inner boundary, as is the case of
interface Z2 in Fig. 3. The Stefan condition for the outer-
most interface becomes, after eliminating the indetermina-
tion, ZdZ=ds ¼ �ff jw00f ðsÞj. The solution is

ZJ�1ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

J�1;0 � 2

Z s

0

ff jw00f ðsÞjds

s
: ð44Þ
Situation (iii) only arises in radially finite hollow cylinders
having only one phase change interface. As mentioned on
Section 4.4, this condition can only be achieved if w00n and
w00f have the same sign. The Stefan condition for the only
interface becomes, after eliminating the indetermination,
ZdZ=ds ¼ fnjw00nðsÞj � ff jw00f ðsÞj. The solution is

ZðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

0 þ 2

Z s

0

½fnjw00nðsÞj � ff jw00f ðsÞj�ds

s
ð45Þ

until either w00nðsÞ or w00f ðsÞ or both changes sign. Analogous
methods to those presented in Sections 4.2 and 4.3 should
be used in case multiple interfaces are present and sign-
switching in the heat-power flux occurs for situations (i),
(ii), and (iii).

4.6. Spherical coordinates

Using the same scaling as in cylindrical coordinates, the
dimensionless problem in spherical coordinates [22,23] is
similar to the one in cylindrical coordinates, Eqs. (35)–
(41), with the exception of the governing equation:

Ste
oh
os
¼ 1

f2

o

of
jj

Bi
f2 oh

of

� �
; ZjðsÞ < f < Zjþ1ðsÞ; ð46Þ

The asymptotic behaviour for Bi! 0 yields

f2 oh
of

� �
¼ f ðsÞ: ð47Þ

The effect of geometry is evident by comparing Eqs. (47),
(42) and (15). Similar situations arise in the solution of
the Stefan condition as in cylindrical coordinates:

Outward phase change (i), where the Stefan condition
reads Z2dZ=ds ¼ f2

njw
00
nðsÞj, and admits the solution

Z0ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

0;0 þ 3

Z s

0

f2
njw

00
nðsÞjds

3

s
: ð48Þ

Inward phase change (ii), where the Stefan condition reads
Z2dZ=ds ¼ �f2

f jw
00
f ðsÞj, and admits the solution

ZJ�1ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

J�1;0 � 3

Z s

0

f2
f jw

00
f ðsÞjds

3

s
: ð49Þ

And finite hollow sphere (iii), where the Stefan condition
reads Z2dZ=ds ¼ f2

njw
00
nðsÞj � f2

f jw
00
f ðsÞj, and admits the

solution

ZðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z3

0 þ 3

Z s

0

½f2
njw

00
nðsÞj � f2

f jw
00
f ðsÞj�ds

3

s
ð50Þ

until either w00nðsÞ or w00f ðsÞ or both changes sign. Similar
methods to those presented in Sections 4.2 and 4.3 should
be used in case multiple interfaces are present and sign-
switching in the heat-power flux occurs for situations (i),
(ii), and (iii).
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5. Generalization

Solutions (33), (45) and (50) exhibit a pattern that allows
one to write a more general solution for the Stefan condi-
tion in Cartesian, cylindrical, and spherical coordinates
for melting and solidification problems. The physical inter-
pretation of such solution is a statement of the principle of
conservation of energy (from which the Stefan condition
itself is derived) subjected to the geometrical configuration
of the problem and the sense of phase change taking place,
neglecting the sensible heat, due to the asymptotic behav-
iour Bi! 0; hence, for an interface ZjðsÞ,

ZjðsÞ ¼ ZG
j;0 þ G

Z s

0

½fðG�1Þ
n jw00nðsÞj � fðG�1Þ

f jw00f ðsÞj�ds
� 	1

G

;

ð51Þ

where G is a geometrical coefficient: G = 1 for Cartesian
coordinates, ðn;NÞ � ðf; ZÞ; G = 2 for cylindrical coordi-
nates, and G = 3 for spherical coordinates, as the asymp-
totic behaviour of the governing equation for Bi! 0
requires

fðG�1Þ oh
of
¼ f ðsÞ; ð52Þ

and the Stefan condition becomes, after eliminating the
indetermination,

ZG�1 dZ
ds
¼ fG�1

n jw00nðsÞj � fG�1
f jw00f ðsÞj: ð53Þ
6. Conclusions

Starting from the classical one-phase Stefan problem
with the boundary condition changed to specified heat-
power flux, it was shown that an isothermal condition char-
acterizes the asymptotic behaviour of the system for
Bi! 0, yielding thus a moving boundary problem in which
the heat diffusion equation does not need to be solved for
any phase; hence, the zero-phase Stefan problem.

In this zero-phase model, only the ODE for the position
of the moving boundary, which is obtained by eliminating
the indetermination in the Stefan condition by imposing
conservation of energy, is left to be solved, admitting a very
simple solution.

Solution procedures for cases involving multiple inter-
faces and sign-switching heat-power flux boundary condi-
tions were outlined for cases in Cartesian coordinates.
Analogous procedures are seemingly easy to follow for
other coordinates.

The simple, lumped nature of the zero-phase problem
allows explicit solutions to be obtained even when several
restrictions of the original problem are relaxed. Thus, solu-
tions for the zero-phase Stefan problem are found for finite
unidimensional systems in Cartesian, cylindrical, and
spherical coordinates and for time-varying, sign-switching
boundary conditions and multiphase however isothermal
initial conditions. All the aforementioned solutions share
common features, allowing for a general expression (51)
to be obtained, in which the type of geometry is represented
by an integer parameter.

The asymptotic solutions derived in the present work
can be used as analytical approximation for cases where
the Biot number is small but finite. Such a simple phase
change model can be employed as an approximate tool in
a great number of practical situations; however, it is only
able to estimate the position of the phase change inter-
face(s), or, inversely, the melting and/or freezing times.

The zero-phase problem is a lower order of approxima-
tion than the widely used Le�ıbenzon’s quasistationary
method, as far as the ability of having a temperature profile
in one of the phases is concerned. This feature can be
viewed either as an over-simplification, or the further
removal of a burden from Le�ıbenzon’s method that allows
the present treatment to approach problems with sign-
switching boundary conditions.

The zero-phase problem shares important common fea-
tures with Le�ıbenzon’s method, viz., (i) the heat-power flux
on a phase adjacent to a boundary is uniform, and identical
to that imposed on the boundary; (ii) changes on the heat-
power flux at the boundary are instantly felt on the inter-
face, producing an instant away effect at a distance; (iii)
neglects sensible heat effects; (iv) overestimates the inter-
face position when applied as an analytical approximation;
(v) have no error estimates when used as an approximation
[2]; and (vi) admits convective and imposed flux boundary
conditions.

However, contrary to Le�ıbenzon’s method, the zero-
phase problem (i) can only mimic imposed temperature
boundary conditions by making q00p / t�1=2, even though
the phase change domain will remain isothermal; (ii) can-
not satisfy an initially linear temperature profile, not fully
representing an one- or two-phase problem.
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